
Solving the hierarchy of the nonisospectral KdV equation with self-consistent sources via the

inverse scattering transform

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 355209

(http://iopscience.iop.org/1751-8121/41/35/355209)

Download details:

IP Address: 171.66.16.150

The article was downloaded on 03/06/2010 at 07:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/35
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 355209 (14pp) doi:10.1088/1751-8113/41/35/355209

Solving the hierarchy of the nonisospectral KdV
equation with self-consistent sources via the inverse
scattering transform

Qi Li1,2, Da-jun Zhang2 and Deng-yuan Chen2

1 Department of Mathematics, East China Institute of Technology, Fuzhou, Jiangxi 344000,
People’s Republic of China
2 Department of Mathematics, Shanghai University, Shanghai 200444,
People’s Republic of China

E-mail: qli289@yahoo.cn and djzhang@staff.shu.edu.cn

Received 15 May 2008, in final form 30 June 2008
Published 28 July 2008
Online at stacks.iop.org/JPhysA/41/355209

Abstract
The hierarchy of the nonisospectral KdV equation with self-consistent sources
is derived. N-soliton solutions of the hierarchy are obtained through the inverse
scattering transform. We develop new treatment of singularities appearing
in the Lax pair in the process of determining time revolutions of scattering
data. Our approach is general and can apply to other (1 + 1)-dimensional
nonisospectral soliton hierarchy with self-consistent sources.

PACS numbers: 02.30.Ik, 05.45.Yv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years, the soliton equations with self-consistent sources [1–3] were studied for both
physical and mathematical interests. In general, the sources can result in solitary waves
moving with nonconstant velocity and cause a great variety of dynamics of soliton solutions.
For example, the KdV equation with self-consistent sources describes the interaction of long
and short capillary-gravity waves [4]. Besides, the sources can lead to ghost solitons [5, 6].
Recently, many classical methods, such as the inverse scattering transform (IST), Darboux
transformation and bilinear approach, have been used to find exact solutions for soliton
equations with self-consistent sources [7–14].

The nonisospectral soliton equations usually describe solitary waves in nonuniform
media [15–17]. These equations are related to time-dependent spectral parameters with
polynomial evolution λt = ∑

αjλ
j in which each coefficient αj corresponds to a certain

type of relaxation effect. For example, one Hirota–Satsuma equation, the KdV equation with

1751-8113/08/355209+14$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/35/355209
mailto:qli289@yahoo.cn
mailto:djzhang@staff.shu.edu.cn
http://stacks.iop.org/JPhysA/41/355209


J. Phys. A: Math. Theor. 41 (2008) 355209 Q Li et al

loss and nonuniformity terms, is related to λt = −2αλ, and α describes the relaxation and
nonuniformity of the media [16]. Besides, the nonisospectral flows related to λt = λj usually
play the role of master symmetries and then generate time-dependent symmetries [18, 19].

In this paper, we solve the following hierarchy of the nonisospectral KdV equation with
self-consistent sources (KdVESCS) through the IST,

ut = T n(xux + 2u) − 2
N∑

j=1

(
φ2

j

)
x
, (n = 0, 1, 2, . . .), (1.1a)

φj,xx = (λj − u)φj , (j = 1, 2, . . . , N), (1.1b)

where φj
.= φj (x, t), λj = κ2

j > 0, κj > 0, (j = 1, 2, . . . , N) are distinct and

T = ∂2 + 4u + 2ux∂
−1, ∂ = ∂

∂x
, ∂−1 = 1

2

(∫ x

−∞
−

∫ ∞

x

)
dx. (1.2)

This hierarchy corresponds to a time-dependent spectral parameter λ with time evolutions
λt = 1

2 (4λ)n+1, and therefore can be used to describe the solitary waves in a certain type
of nonuniform media. The way to derive the hierarchy and its Lax pair is similar to that in
[8, 12]. We develop the treatment of singularities appearing in the Lax pair in the process of
determining time revolutions of scattering data. This treatment is similar to [8]. Our approach
can apply to other (1 + 1)-dimensional nonisospectral soliton hierarchy with self-consistent
sources.

This paper is organized as follows. In section 2, the hierarchy of the nonisospectral
KdVESCS is derived. In section 3, some results of the direct scattering problem are listed
briefly for completeness. Section 4 determines the time evolutions of the scattering data, and
finally section 5 gives the N-soliton solutions of the hierarchy and discusses dynamics for
some obtained solutions.

2. The hierarchy of the nonisospectral KdVESCS

In this section, we derive the hierarchy of the nonisospectral KdVESCS. Our approach is
directly on the basis of the eigenfunctions of recursion operator and differs slightly from the
one using constrained flows [7, 8].

Let us start from the following linear problems:

φxx = (λ − u)φ, (2.1a)

φt = Aφ + Bφx. (2.1b)

From the related compatibility condition φxx,t = φt,xx , we have

A = − 1
2Bx, (2.2a)

ut = 1
2T Bx − 2λBx + λt , (2.2b)

where T is defined by (1.2). Now we expand B as

B =
n∑

k=0

bkλ
n−k +

N∑
j=1

µj

λ − λj

, (2.3a)

with

B|u=0 = 4nx, (2.3b)
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where {λj } are N distinct eigenvalues satisfying (1.1b). Substituting (2.3a) into (2.2b) and
taking λt = 1

2 (4λ)n+1 yield

ut = T n(xux + 2u) − 2
N∑

j=1

µj,x, (n = 0, 1, 2, . . .), (2.4a)

T µj,x = 4λjµj,x, (j = 1, 2, . . . , N). (2.4b)

Then, by taking

µj = φ2
j , (2.5)

where φj satisfies (1.1b), we can reach the hierarchy of the nonisospectral KdVESCS (1.1).
Obviously, it is easy to obtain the Lax pair of the hierarchy (1.1), i.e., (2.1), where

A = −1

2
(4λ)n −

n∑
j=1

(4λ)n−j T j−1(xux + 2u) − 1

2

N∑
j=1

(
φ2

j

)
x

λ − λj

, (2.6a)

B = (4λ)nx +
n∑

j=1

2(4λ)n−j ∂−1T j−1(xux + 2u) +
N∑

j=1

φ2
j

λ − λj

. (2.6b)

The first three equations in the hierarchy (1.1a) are

ut = xux + 2u − 2
N∑

j=1

(
φ2

j

)
x
, (2.7a)

ut = xK1 + 4uxx + 8u2 + 2ux∂
−1u − 2

N∑
j=1

(
φ2

j

)
x
, (2.7b)

ut = xK2 + 6K1,x + 12uuxx + 32u3 + 2K1∂
−1u + 6ux∂

−1u2 − 2
N∑

j=1

(
φ2

j

)
x
, (2.7c)

where

K1 = uxxx + 6uux, K2 = uxxxxx + 10uuxxx + 20uxuxx + 30u2ux,

and each {Kj } are the isospectral KdV flows described by

Kj = T jux, (j = 1, 2, . . .). (2.8)

3. The direct scattering problem

For completeness, we briefly list some results of the direct scattering problem related to the
spectral problem (2.1a) [20, 21]. We replace λ with −k2 in the spectral problem (2.1). We
also suppose that u(x, t) and {φj (x, t)} (j = 1, 2, . . . , N) vanish rapidly as |x| → ∞, and
the real potential u(x, t) satisfies

∫ +∞
−∞ |xju(x)| dx < ∞ (j = 0, 1, 2).

There are two Jost solutions for the spectral problem (2.1a), φ+(x, k) and φ−(x, k), which
are bounded for all values of x and are analytic on Im k > 0 and continuous on Im k � 0 for
k. These two Jost solutions satisfy the asymptotic conditions,

φ+(x, k) ∼ eikx, φ+
x (x, k) ∼ ik eikx, (x → ∞) (3.1a)

3
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φ−(x, k) ∼ e−ikx, φ−
x (x, k) ∼ −ik e−ikx, (x → −∞). (3.1b)

For all real value k, there are linear relationships between two Jost solutions

φ−(x, k) = a(k)φ+(x,−k) + b(k)φ+(x, k), (3.2)

where

a(k) = 1

2ik
W(φ−(x, k), φ+(x, k)), b(k) = 1

2ik
W(φ+(x,−k), φ−(x, k)), (3.3)

and a(k) is analytic on Im k > 0 and continuous on Im k � 0, while b(k) is only defined on
Im k = 0. Here W(µ, ν) is a Wronskian defined by W(µ, ν) = µνx − νµx .

The function a(k) has a finite number of simple zeros at k1, k2, . . . , kN on imaginary
axis of the upper half k-plane, i.e. km = iκm, κm > 0, (m = 1, 2, . . . , N). So φ+(x, iκm) and
φ−(x, iκm) are linearly dependent.

Scattering data for the spectral problem (2.1) are defined by

S(t) :

{
R(k) = b(k)

a(k)
, Im k = 0, iκm, cm,m = 1, 2, . . . , N

}
, (3.4)

where each cm is the so-called normalization constant of eigenfunction φ+(x, iκm), defined by
c2
m = − Ibm

ak(iκm)
, bm = φ−(x,iκm)

φ+(x,iκm)
.

4. The time evolutions of the scattering data

In this section, we derive the time evolutions of the scattering data.
By φ(x, t, iκm) denote the normalized Jost solution of φ+(x, t, k) with k = iκm and the

normalization constant cm(t), i.e.,

φ(x, t, iκm) = cm(t)φ+(x, t, iκm), (m = 1, 2, . . . , N). (4.1)

Meanwhile, corresponding λj = −(iκj )
2 in (1.1b), we can set φj

.= φj (x, t) in (1.1b) to be

φj = √
2βj (t)φ(x, t, iκj ), (j = 1, 2, . . . , N), (4.2)

where βj (t) is an arbitrary positive function of t. Thus we have

βj (t) = 1

2

∫ ∞

−∞
φ2

j dx. (4.3)

Then, combining (1.1b) with λj = −(iκj )
2 and (2.1a) with λ = −k2 leads to the following:

φj,xxφ(x, t, k) − φjφxx(x, t, k) = (
k2 + κ2

j

)
φjφ(x, t, k), (4.4)

which further means

(φj,xφ(x, t, k) − φjφx(x, t, k))x = (
k2 + κ2

j

)
φjφ(x, t, k), (4.5a)

(φj,xφ(x, t, k) − φjφx(x, t, k))x,k = 2kφjφ(x, t, k) +
(
k2 + κ2

j

)
φj (φ(x, t, k))k. (4.5b)

Integrating the above equalities and taking k → iκm at mean time, we have

φj,xφ(x, t, iκm) − φjφx(x, t, iκm) = (
κ2

j − κ2
m

)
∂−1(φjφ(x, t, iκm)), (4.6a)

φj,x(φ(x, t, iκm))k − φj (φ(x, t, iκm))x,k = 2iκm∂−1(φjφ(x, t, iκm)), (4.6b)

where ∂−1 = 1
2

(∫ x

−∞ − ∫ ∞
x

)
dx, and these two equalities are valid for arbitrary j and m. Then

taking x → ∞ in (4.6) yields

4
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−∞
φjφ(x, t, iκm) dx = 0, (j �= m), (4.7a)∫ ∞

−∞
φjφ(x, t, iκm)∂−1(φjφ(x, t, iκm)) dx = 0, (j = 1, 2, . . . , N), (4.7b)

where (4.7a) provides the orthogonal property of discrete eigenfunctions.

Lemma 1. The following asymptotic behaviors hold:

lim
k→iκm

N∑
j=1,j �=m

1

k2 + κ2
j

∫ ∞

x

[(
φ2

j (ξ, t)
)
ξ
φ2(ξ, t, k) − φ2

j (ξ, t)(φ2(ξ, t, k))ξ
]

dξ ∼ 0,

(x → −∞), (4.8a)

lim
k→iκm

1

k2 + κ2
m

∫ ∞

x

[(
φ2

m(ξ, t)
)
ξ
φ2(ξ, t, k) − φ2

m(ξ, t)(φ2(ξ, t, k))ξ
]

dξ ∼ 0,

(x → −∞). (4.8b)

Proof. Noting that each
(
φ2

j

)
x

is an eigenfunction of the operator T with respect to the
eigenvalue 4κ2

j and T ∂ = ∂3 + 4u∂ + 2ux is an anti-symmetric operator with respect to the
inner product 〈f, g〉 = ∫ ∞

−∞ f · g dx for rapidly decreasing functions f and g as |x| → ∞,
we have

κ2
j

〈(
φ2

j

)
x
, φ2(x, t, iκm)

〉 = 1
4

〈
T ∂φ2

j , φ
2(x, t, iκm)

〉
= − 1

4

〈
φ2

j , T ∂φ2(x, t, iκm)
〉

= −κ2
m

〈
φ2

j , (φ
2(x, t, iκm))x

〉
= κ2

m

〈(
φ2

j

)
x
, φ2(x, t, iκm)

〉
.

For j �= m, since κj �= κm, it then turns out that
〈(
φ2

j

)
x
, φ2(x, t, iκm)

〉 = 0, and then (4.8a)
holds.

For (4.8b), we have

lim
k→iκm

1

k2 + κ2
m

∫ ∞

x

[(
φ2

m(ξ, t)
)
ξ
φ2(ξ, t, k) − φ2

m(ξ, t)(φ2(ξ, t, k))ξ
]

dξ

= lim
k→iκm

1

k

∫ ∞

x

[φm(ξ, t)(φ(ξ, t, k))k[φm,ξ (ξ, t)φ(ξ, t, k)

−φm(ξ, t)(φ(ξ, t, k))ξ ] + φm(ξ, t)φ(ξ, t, k)[φm,ξ (ξ, t)(φ(ξ, t, k))k

−φm(ξ, t)(φ(ξ, t, k))ξ,k]] dξ,

where we have made use of the L’Hospital’s rule. Noting that (4.2) contributes

lim
k→iκm

[φm,ξ (ξ, t)φ(ξ, t, k) − φm(ξ, t)(φ(ξ, t, k))ξ ] = 0,

and also making use of (4.6b) we further have

lim
k→iκm

1

k2 + κ2
m

∫ ∞

x

[(
φ2

m(ξ, t)
)
ξ
φ2(ξ, t, k) − φ2

m(ξ, t)(φ2(ξ, t, k))ξ
]

dξ

= 2
∫ ∞

x

φm(ξ, t)φ(ξ, t, iκm)
[
∂−1
ξ (φm(ξ, t)φ(ξ, t, iκm))

]
dξ

5
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= 2
∫ ∞

x

[(
∂−1
ξ (φm(ξ, t)φ(ξ, t, iκm))

)2]
ξ

dξ

= (
∂−1
ξ (φm(ξ, t)φ(ξ, t, iκm))

)2∣∣ξ=∞
ξ=x

,

where ∂−1
ξ specially means 1

2

(∫ ξ

−∞ − ∫ ∞
ξ

)
dξ . It is then easy to reach (4.8b) by taking

x → −∞. Thus we complete the proof. �

Lemma 2. The following asymptotic behaviors hold:

lim
k→iκm

N∑
j=1,j �=m

1

k2 + κ2
j

[
1

2

(
φ2

j

)
x
φ(x, t, k) − φ2

j φx(x, t, k)

]
∼ 0, x → ∞, (4.9a)

lim
k→iκm

1

k2 + κ2
m

[
1

2

(
φ2

m

)
x
φ(x, t, k) − φ2

mφx(x, t, k)

]
∼ cm(t) e−iκmxβm(t), x → ∞, (4.9b)

where βm(t) is given by (4.2) and (4.3).

Proof. Equation (4.9a) is obviously valid due to both φj and φx(x, t, iκm) tending to zero
when x → ∞. By using the L’Hospital’s rule the lhs of (4.9b) reads

1

2iκm

φm(φm,x(φ(x, t, iκm))k − φm(φ(x, t, iκm))x,k).

It then follows from (4.6b) (taking j = m) that

l.h.s. (4.9b) = φm∂−1φmφ(x, t, iκm) = φm

√
2βm(t)∂−1φ2(x, t, iκm),

where we have inserted (4.2) into the integration. Finally, noting that φ(x, t, iκm) is
normalized, ∂−1 = 1

2

(∫ x

−∞ − ∫ ∞
x

)
dx, and also using (3.1a) and (4.1) we have

l.h.s. (4.9b) ∼ cm(t) e−iκmxβm(t), (x → ∞). �

It is easy to verify the following lemma.

Lemma 3. Suppose that φ(x, t, k) is a solution of (2.1a), A and B satisfy the condition
φxxt = φtxx , i.e. (2.2), then

P(x, t, k) = φt(x, t, k) − Aφ(x, t, k) − Bφx(x, t, k) (4.10)

solves (2.1a) as well.

Based on the above three lemmas, we now give time evolutions of discrete scattering data.

Theorem 1. The discrete scattering data in (3.4) satisfy the following time evolutions: for
n = 0,

κj (t) = κj (0) et , cj (t) = cj (0) exp

(
1

2
t +

∫ t

0
βj (τ ) dτ

)
; (4.11a)

for n �= 0,

κj (t) = (−2n · 4nt + κ−2n
j (0)

)−1/2n
,

cj (t) = cj (0) exp

(∫ t

0

[ (
n + 1

2

)
4n

−2n · 4nτ + κ−2n
j (0)

+ βj (τ )

]
dτ

)
.

(4.11b)

6
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Proof. Suppose that φ(x, t, k) is another Jost solution of (2.1a), which is linearly independent
of φ(x, t, k). Since from lemma 3 P(x, t, k) also solves (2.1a), there exist α(k) and β(k) such
that

φt(x, t, k) +
Bx

2
φ(x, t, k) − Bφx(x, t, k) = α(k)φ(x, t, k) + β(k)φ(x, t, k). (4.12)

Noting the fact of both φ(x, t, k) and φx(x, t, k) tending to zero as x → ∞ for Im k > 0, it is
easily to see β(k) = 0, i.e.,

φt(x, t, k) +
Bx

2
φ(x, t, k) − Bφx(x, t, k) = α(k)φ(x, t, k). (4.13)

We now multiply (4.13) by 2φ(x, t, k) and integrate them. This gives

d

dt

∫ ∞

x

φ2(x, t, k) dx +
∫ ∞

x

[Bxφ
2(x, t, k) − B(φ2(x, t, k))x] dx = 2α(k)

∫ ∞

x

φ2(x, t, k) dx.

(4.14)

For convenient we divide B as

B = B1 + B2, (4.15a)

and

B1 = (−4k2)nx +
n∑

j=1

2(−4k2)n−j ∂−1T j−1 (xux + 2u), (4.15b)

B2 = −
N∑

j=1

φ2
j

k2 + κ2
j

. (4.15c)

Now let us determine the value of α(iκm). First combining (4.8a) and (4.8b) in lemma 1 just
leads to

lim
k→iκm

∫ ∞

x

[B2,xφ
2(x, t, k) − B2(φ

2(x, t, k))x] dx ∼ 0, (x → ∞). (4.16)

Then, noting that
∫ +∞
−∞ φ2(x, t, iκm) dx = 1 we further have

α(iκm) = 1

2

∫ ∞

−∞
[B1,xφ

2(x, t, iκm) − B1(φ
2(x, t, iκm))x] dx. (4.17)

Thus, further from [22] we can reach

α(iκm) = (n + 1)(2κm)2n, (m = 1, 2, . . . , N). (4.18)

With α(iκm) in hand, we derive time revolutions of the discrete scattering data. We
consider the limit of (4.13) with respect to k → iκm and the asymptotic result under x → ∞.
Thanks for

lim
k→iκm

(B2,x

2
φ(x, t, k) − B2φx(x, t, k)

)
∼ −cm(t) e−κmxβm(t), (x → ∞), (4.19)

which comes from the combination of (4.9a) and (4.9b) in lemma 2, we have

cm,t e−κmx + cm(−κm,tx) e−κmx + 1
2 · 4nκ2n

m cm e−κmx − (
4nκ2n

m x
)
(−cmκm) e−κmx

− cm(t) e−κmxβm(t) = (n + 1)4nκ2n
m e−κmxcm, (m = 1, 2, . . . , N), (4.20)

7
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where we have made use of φ(x, t, iκm) = cm(t)φ+(x, t, iκm), (4.18) and (3.1a) with k = iκm.
Thus we finally obtain

κm,t (t) = 4nκ2n+1
m (t), cm,t (t) = [(

n + 1
2

)
4nκ2n

m (t) + β(t)
]
cm(t),

(m = 1, 2, . . . , N). (4.21)

The proof has been finished. �

Obviously, here the evolution of the normalization constant cm(t) is added by an extra
term βm(t)cm(t) compared with the one of the nonisospectral KdV hierarchy without source
[22].

5. N-soliton solution for the nonisospectral KdVESCS hierarchy

In this section, we drive out the reflectionless potentials of the hierarchy of the nonisospectral
KdVESCS (1.1).

According to the standard IST procedure given in [20], the solution of the nonisospectral
KdVESCS hierarchy (1.1) can be derived in the following way:

u(x, t) = 2
d

dx
K(x, x, t), (5.1a)

φj (x, t) = √
2βj (t)cj (t)ψ

+(x, t, iκj ) (5.1b)

= √
2βj (t)cj (t)

(
e−κj x +

∫ ∞

x

K(x, s, t) e−κj s ds

)
, (j = 1, 2, . . . , N), (5.1c)

where K(x, y, t) satisfies the Gel’fand–Levitan–Marchenko equation,

K(x, y, t) + F(x + y, t) +
∫ ∞

x

K(x, s, t)F (s + y, t) ds = 0, (y > x) (5.2)

with

F(x, t) = 1

2π

∫ ∞

−∞
R(k) eikx dx +

N∑
j=1

c2
j (t) e−κj x . (5.3)

Particularly, when the reflection coefficient R(t, k(t)) = 0, (5.2) reads

K(x, y, t) +
N∑

m=1

c2
m(t) e−κm(t)(x+y) +

N∑
m=1

c2
m(t) e−κm(t)y

∫ ∞

x

K(x, s, t) e−κm(t)s ds = 0. (5.4)

Then substituting the variable separation form

K(x, y, t) =
N∑

l=1

cl(t)hl(x) e−κl (t)y (5.5)

into (5.4) yields

K(x, x, t) = 2
d

dx
ln det D(x, t), (5.6)

where

D(x, t) = (dij (x, t))N×N, dij = δij +
1

κi(t) + κj (t)
ci(t)cj (t) e−(κi (t)+κj (t))x . (5.7)

8
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And finally we reach

u(x, t) = 2
d2

dx2
ln det D(x, t), (5.8a)

φj (x, t) = √
2βj (t)

∑N
m=1 cm(t) e−κmxDmj

det D(x, t)
, (5.8b)

where Dmj denotes the co-factors of the matrix D(x, t). Thus, for different n, from theorem 1
we can recover κj (t) and cj (t) from their initial value κj (0) and cj (0), and further get solutions
for the whole nonisospectral KdVESCS hierarchy (1.1).

We write out the explicit forms of exact solutions of the first three equations in (1.1),
which correspond to n = 0, 1 and 2, respectively. One-soliton solutions (corresponding to
N = 1) for these three equations are, respectively,

u0(x, t) = 2ρ2
1 e2t sech2 θ0,1, φ0,1(x, t) =

√
ρ1 etβ1(t) sech θ0,1, (5.9a)

u1(x, t) = 2

ρ1 − 8t
sech2 θ1,1, φ1,1(x, t) =

√
β1(t)

(ρ1 − 8t)
1
4

sech θ1,1, (5.9b)

u2(x, t) = 2

(ρ1 − 64t)
1
2

sech2 θ2,1, φ2,1(x, t) =
√

β1(t)

(ρ1 − 64t)
1
8

sech θ2,1, (5.9c)

where we define

θ0,j = −xk0,j (t) +
∫ t

0
βj (τ ) dτ + θ

(0)
0,j , (5.10a)

θn,j = −xkn,j (t) +
∫ t

0
βj (τ ) dτ − n ln kn,j (t) + θ

(0)
n,j , (n = 1, 2), (5.10b)

k0,j (t) = ρj et , kn,j (t) = (ρj − 8nt)−
1

2n , (n = 1, 2), (5.10c)

and ρj , θ
(0)
n,j (n = 0, 1, 2) are all real constants.

For N = 2, we have the following uniform expression for two-soliton solutions for the
three equations correspond to n = 0, 1 and 2 in (1.1):

un(x, t) =

8
k2
n,1 e2θn,1 + k2

n,2 e2θn,2 + 2(kn,1 − kn,2)
2 e2(θn,1+θn,2) + A2

n

(
k2
n,2 e4θn,1+2θn,2 + k2

n,1 e2θn,1+4θn,2
)

(
1 + e2θn,1 + e2θn,2 + A2

n e2(θn,1+θn,2)
)2 ,

(5.11a)

φn,1(x, t) = 2
√

kn,1β1(t) eθn,1(1 + An e2θn,2)

1 + e2θn,1 + e2θn,2 + A2
n e2(θn,1+θn,2)

, (5.11b)

φn,2(x, t) = 2
√

kn,2β2(t) eθn,2(1 − An e2θn,1)

1 + e2θn,1 + e2θn,2 + A2
n e2(θn,1+θn,2)

, (5.11c)

where kn,j
.= kn,j (t) and θn,j are defined as (5.10), An = kn,1(t)−kn,2(t)

kn,1(t)+kn,2(t)
.

For convenience, we replace t with −t , then the hierarchy of the nonisospectral KdVESCS
reads

9
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Figure 1. The shape and motion of one soliton of the nonisospectral KdVESCS. (a) A stationary

soliton given by (5.9b) for ρ1 = 50, β1(t) = − 4
ρ1+8t

−√
ρ1(ρ1+8t)−

3
2 (2 ln ρ1+4θ

(0)
1,1) and θ

(0)
1,1 = 0.

(b) The density plot of a moving soliton given by (5.9b) for ρ1 = 50, β1(t) = 2 − 2 sin 2t and
θ

(0)
1,1 = 1, x ∈ [−80, 100], t ∈ [−5, 10]. The blue area denotes zero value and bright strap denotes

positive soliton.

ut = −T n(xux + 2u) − 2
N∑

j=1

(
φ2

j

)
x
, (n = 0, 1, 2, . . .), (5.12a)

φj,xx = (λj − u)φj , (j = 1, 2, . . . , N). (5.12b)

In the following, we consider the dynamics of the solution for the nonisospectral
KdVESCS. Equation (5.9b) shows that a soliton travels with a decay amplitude 2

ρ1+8t
, and

the time-dependent top trace

x(t) =
√

ρ1 + 8t

(∫ t

0
β1(τ ) dτ +

1

2
ln(ρ1 + 8t) + θ

(0)
0,1

)
, (5.13)

or the speed of the propagate

x ′(t) = (ρ1 + 8t)β1(t) + 4 + 4
(∫ t

0 β1(τ ) dτ + 1
2 ln(ρ1 + 8t) + θ

(0)
0,1

)
√

ρ1 + 8t
. (5.14)

The non-negative continuous function β1(t) acts as source which affects the speed of
the soliton but not the shape. When we take ρ1 > 0, θ

(0)
0,1 � 0 and β1(t) = − 4

ρ1+8t
−

√
ρ1(ρ1 + 8t)−

3
2
(
2 ln ρ1 + 4θ

(0)
0,1

)
, we can obtain the stationary soliton. In this case, x(t) ≡√

ρ1
(

1
2 ln ρ1 + θ

(0)
0,1

)
and x ′(t) ≡ 0. Figure 1 describes the shape and motion of one soliton.

Taking n = 1 in (5.11), we derive the two-soliton solution for the nonisospectral
KdVESCS. First, we suppose that ρ2 > ρ1 > 0, and t > − ρ1

8 . In this case, it is not
easy to analytically investigate two-soliton interactions, but they do have elastic scattering.
Figure 2(a) shows the elastic interactions of two solitons with decay amplitudes. For
comparison, we give the two corresponding single solitons in figures 2(b) and (c). Especially,
when we take ρ1 = ρ2 > 0, we get the degenerate two-soliton solutions. In this case, we have

u1(x, t) = 8(e2θ1,1 + e2θ1,2)

(ρ1 + 8t)(1 + e2θ1,1 + e2θ1,2)2
, (5.15)

10
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(a) (b)

(c)

Figure 2. One-soliton behaviors and two-soliton interactions of the nonisospectral KdVESCS.
(a) The density plot of the two-soliton solution given by (5.11) (n = 1) for ρ1 = 65, ρ2 =
85, β1(t) = 0.6 e0.6t , β2(t) = 0.6 e−0.6t , θ

(0)
1,1 = 6, θ

(0)
1,2 = −2, and x ∈ [−100, 150], t ∈ [−7, 15].

(b) The density of corresponding one soliton by (5.9b) for ρ1 = 65, β1(t) = 0.6 e0.6t , θ
(0)
1,1 = 6,

andx ∈ [−100, 150], t ∈ [−7, 15]. (c) The density of corresponding one soliton by (5.9b) for
ρ2 = 85, β2(t) = 0.6 e−0.6t , θ

(0)
1,2 = −2, andx ∈ [−100, 150], t ∈ [−7, 15]. The blue area denotes

zero value and bright strap denotes positive soliton.

where

θ1,j = x√
ρ1 + 8t

−
∫ t

0
βj (τ ) dτ − 1

2
ln(ρ1 + 8t) + θ

(0)
1,j , j = 1, 2.

Figures 3(a) and (b) describe that a single soliton is ‘disturbed’ by invisible ‘ghost’ soliton.
In figure 3(c), a soliton travels first with its original source and then suddenly with another
different source.

Then we investigate the asymptotic behaviors for more detail about such degenerate case.
Suppose that βj (t) satisfy

∫ t

0
(β1(t) − β2(t)) dt → −∞, as t → +∞ (5.16)

11
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(a) (b)

(c)

Figure 3. The degenerate two-soliton solution (ρ1 = ρ2) of the nonisospectral KdVESCS. (a) The
density plot of the degenerate two-soliton solution given by (5.15) for ρ1 = ρ2 = 65, β1(t) =
0.6 e0.6t , β2(t) = 0.6 e−0.6t , θ

(0)
1,1 = 6, θ

(0)
1,2 = −2, and x ∈ [−100, 150], t ∈ [−7, 15]. (b) The

density of the degenerate two-soliton by (5.15) with same parameters as (a) except θ
(0)
1,2 = 2

instead of −2. Thus one can see the existence of θ1,2-soliton by comparing (a) and (b). (c) The
density plot of the degenerate two-soliton solution given by (5.15) for ρ1 = ρ2 = 65, β1(t) =
0.02 e0.6t , β2(t) = 2 − 2sin2t, θ

(0)
1,1 = 4.2, θ

(0)
1,2 = 4, and x ∈ [−80, 80], t ∈ [−7, 15]. The blue

area denotes zero value and bright strap denotes positive soliton.

and the two solitons involved in the degenerate case are called θ1,1-soliton and θ1,2-soliton,
respectively. We consider the coordinate frame co-moving with θ1,1-soliton,(

X = θ1,1 = x√
ρ1 + 8t

−
∫ t

0
β1(τ ) dτ − 1

2
ln(ρ1 + 8t) + θ

(0)
1,1, t

)
, (5.17)

where θ1,1 stay zero but

θ1,2 = θ1,1 +
∫ t

0
β1(τ ) dτ + θ

(0)
1,2 − θ

(0)
1,1 → −∞, as t → +∞ (5.18)

due to (5.22). This further gives

u1(x, t) → 2

ρ1 + 8t
sech2 θ1,1, t → +∞. (5.19)

12
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Similarly, under the frame(
Y = θ1,2 = x√

ρ2 + 8t
−

∫ t

0
β2(τ ) dτ − 1

2
ln(ρ2 + 8t) + θ

(0)
1,2, t

)
, (5.20)

which co-moves with θ1,2-soliton (letting θ1,2 stay zero), we have

u → 0, t → +∞. (5.21)

Thus we conclude that for the final states of two solitons involved in the degenerate case, one
exists but another disappears under condition (5.22). Obviously, similar result holds when∫ t

0
(β1(t) − β2(t)) dt → +∞, as t → +∞. (5.22)

6. Conclusion

We have derived the hierarchy of the nonisospectral KdVESCS, and obtain N-soliton solutions
of the hierarchy via the IST. The key step is to determine time revolutions of scattering data.

Since the source part
∑N

j=1
φ2

j

k2+κ2
j

in the Lax pair can generate singularities when k tends to iκj ,

we have developed two lemmas (lemmas 1 and 2) to deal with the singularities and further
get the time revolutions of scattering data. We have described in detail our treatment of the
singularities in the paper and the treatment is slightly different from [8]. Our approach can
apply to other (1 + 1)-dimensional soliton hierarchy with self-consistent sources.
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